ANNAMALAI WIVERSITY

FACULTY OF ENGINEERING AND TECHNOLOGY

<u>MID-TERM TEST – I (2019-20) – RE TEST</u>

BRANCH: B.E. (CIVIL & STRUCTURAL ENGINEERING)

SEMESTER: FOURTH

COURSE CODE & TITLE: CZES-402 INTRODUCTION TO SOLID MECHANICS

Time: 90 minutes

Max. Marks: 40

		PART- A (8x 1 = 8 Marks) (Multiple Choice Questions) Answer ALL Questions	Marks	co	BTL	РО	PSO
1		Define: Stress		1	K1	1,2,3,4 ,7	1,2
2		State Hooke's Law		1	K1	1,2,3,4 ,7	1,2
3		Define Poisson's ratio		1	K1	1,2,3,4 ,7	1,2
4		Write the expression for Young's Modulus in terms of Shear Modulus and Bulk Modulus		1	K1	1,2,3,4 ,7	1,2
5		Define: SF at a section		2	K1	1,2,3,4 ,5,7,9	1,2
6		Give the Reactions and displacement of Hinged support		2	K1	1,2,3,4 ,5,7,9	1,2
7		Write down the list of stress resultants available in a beam		2	K1	1,2,3,4 ,5,7,9	1,2
8		For a simply supported beam subjected to UDL,maximum BM occursa)At Supportb)At Quarter span pointc)At Mid spand)None of the above		2	K1	1,2,3,4 ,5,7,9	1,2
		PART- B (4 x 3 = 12 Marks)	stio	n		I	
9	(a)	State and explain Saint Venant's Principle		1	K1	1,2,3,4 ,7	1,2
		OR					
	(b)	Explain Hoop's Stress		1	K1	1,2,3,4 ,7	1,2
10	(a)	Draw the stress-strain curve for mild steel (qualitatively) and explain the salient features		1	K2	1,2,3,4 ,7	1,2
		OR					
	(b)	What is Proof stress? Explain		1	K2	1,2,3,4 ,7	1,2
11	(a)	Differentiate Sagging and Hogging bending		2	K2	1,2,3,4 ,5,7,9	1,2
		OR					
	(b)	Explain the significance of Point of contraflexure		2	K2	1,2,3,4 ,5,7,9	1,2

12	(a)	Draw the BMD for a simply supported beam of span		2	K2	1,2,3,4	1,2				
		L subjected to two point loads of intensity W at a				,5,7,9					
		distance 'a' from supports									
	(1.)	OR		_	1/0	1001	1.0				
	(b)	Discuss the relationship between the load, SF and		2	K2	1,2,3,4	1,2				
		BM in a determinate beam				,5,7,9					
	$PART_{-} C (2 \times 10 - 20 Marke)$										
	$\Delta nswer either (a) or (b) in each Question$										
13	(a)	A steel tube of 30mm external diameter and 20mm		1	K3	1.2.3.4	1.2				
	()	internal diameter encloses a copper rod of 15mm				,7	.,_				
		diameter to which it is rigidly joined at each end. If				,					
		at a temperature of 10°C there is no longitudinal									
		stresses, calculate the stresses in the rod and tube									
		when the temperature is raised to 200°C. Take E for									
		steel and copper as 2.1×10^5 MPa and 1.5×10^5 MPa									
		respectively. Value of coefficient of linear									
		expansion for steel and copper is given as 11x10 ⁻									
		6 /°C and 16x10 ⁻⁶ /°C respectively.									
		OR									
	(b)	An element in a stressed material has tensile stress		1	K3	1,2,3,4	1,2				
		of 500 N/mm ² and compressive stress of 350N/mm ²				,7					
		acting on two mutually perpendicular planes and									
		equal shear stress of 100 N/mm ² on these planes.									
		Find the principal stresses and its planes. Find the									
		maximum shear stress and its plane.									
14	(a)	Draw the S.F.D and B.M.D for the beam shown in fig: 1		2	K3	1,2,3,4	1,2				
						,5,7,9					
		P P ↑									
		AB									
		Fig 1									
		rıg-1									
		OR									
	(b)	A Cantilever beam 1.8m long carries a UDL of		2	K3	1,2,3,4	1,2				
		2kN/m over 1.2m from free end and a concentrated				,5,7,9					
		load of 1.5kN at the centre of the beam. Construct									
		the SF and BM diagrams.									