FACULTY OF ENGINEERING AND TECHNOLOGY

MID-TERM TEST - I (2019-20) - RE TEST

BRANCH:
SEMESTER:

COURSE CODE \& TITLE: CZES-402 INTRODUCTION TO SOLID MECHANICS
B.E. (CIVIL \& STRUCTURAL ENGINEERING)

FOURTH

PART- A (8x 1 = 8 Marks) (Multiple Choice Questions) Answer ALL Questions			$\stackrel{\text { n }}{\substack{\text { n }}}$	O	$\underset{\sim}{1}$	O	¢
1		Define: Stress		1	K1	$\begin{array}{\|l\|} \hline 1,2,3,4 \\ \hline, 7 \end{array}$	1,2
2		State Hooke's Law		1	K1	$\frac{1}{1,2,3,4}$	1,2
3		Define Poisson's ratio		1	K1	$\begin{aligned} & 1,2,3,4 \\ & , 7 \end{aligned}$	1,2
4		Write the expression for Young's Modulus in terms of Shear Modulus and Bulk Modulus		1	K1	$\begin{aligned} & 1,2,3,4 \\ & , 7 \end{aligned}$	1,2
5		Define: SF at a section		2	K1	$\begin{aligned} & \hline 1,2,3,4 \\ & , 5,7,9 \\ & \hline \end{aligned}$	1,2
6		Give the Reactions and displacement of Hinged support		2	K1	$\begin{aligned} & 1,2,3,4 \\ & , 5,7,9 \end{aligned}$	1,2
7		Write down the list of stress resultants available in a beam		2	K1	$\begin{aligned} & 1,2,3,4 \\ & , 5,7,9 \end{aligned}$	1,2
8		For a simply supported beam subjected to UDL, maximum BM occurs a)At Support b)At Quarter span point c) At Mid span d) None of the above		2	K1	$\begin{aligned} & 1,2,3,4 \\ & , 5,7,9 \end{aligned}$	1,2
PART- B (4 x 3 = 12 Marks) Answer either (a) or (b) in each Question							
9	(a)	State and explain Saint Venant's Principle		1	K1	$\begin{aligned} & 1,2,3,4 \\ & , 7 \end{aligned}$	1,2
		OR					
	(b)	Explain Hoop's Stress		1	K1	$\begin{array}{\|l\|} \hline 1,2,3,4 \\ \hline, 7 \\ \hline \end{array}$	1,2
10	(a)	Draw the stress-strain curve for mild steel (qualitatively) and explain the salient features		1	K2	$\begin{aligned} & 1,2,3,4 \\ & , 7 \end{aligned}$	1,2
	(b)	What is Proof stress? Explain		1	K2	$\begin{array}{\|l\|} \hline 1,2,3,4 \\ \hline, 7 \end{array}$	1,2
11	(a)	Differentiate Sagging and Hogging bending		2	K2	$\begin{aligned} & 1,2,3,4 \\ & , 5,7,9 \end{aligned}$	1,2
		OR					
	(b)	Explain the significance of Point of contraflexure		2	K2	$\begin{aligned} & 1,2,3,4 \\ & , 5,7,9 \end{aligned}$	1,2

12	(a)	Draw the BMD for a simply supported beam of span L subjected to two point loads of intensity W at a distance 'a' from supports	2	K2	$\begin{aligned} & 1,2,3,4 \\ & , 5,7,9 \end{aligned}$	1,2
		OR				
	(b)	Discuss the relationship between the load, SF and BM in a determinate beam	2	K2	$\begin{aligned} & \hline 1,2,3,4 \\ & \hline, 5,7,9 \end{aligned}$	1,2
PART- C ($2 \times 10=20$ Marks) Answer either (a) or (b) in each Question						
13	(a)	A steel tube of 30 mm external diameter and 20 mm internal diameter encloses a copper rod of 15 mm diameter to which it is rigidly joined at each end. If at a temperature of $10^{\circ} \mathrm{C}$ there is no longitudinal stresses, calculate the stresses in the rod and tube when the temperature is raised to $200^{\circ} \mathrm{C}$. Take E for steel and copper as $2.1 \times 10^{5} \mathrm{MPa}$ and $1.5 \times 10^{5} \mathrm{MPa}$ respectively. Value of coefficient of linear expansion for steel and copper is given as $11 \times 10^{-}$ ${ }^{6} /{ }^{\circ} \mathrm{C}$ and $16 \times 10^{-6} /{ }^{\circ} \mathrm{C}$ respectively.	1	K3	$\begin{array}{\|l\|} \hline 1,2,3,4 \\ , 7 \end{array}$	1,2
		OR				
	(b)	An element in a stressed material has tensile stress of $500 \mathrm{~N} / \mathrm{mm}^{2}$ and compressive stress of $350 \mathrm{~N} / \mathrm{mm}^{2}$ acting on two mutually perpendicular planes and equal shear stress of $100 \mathrm{~N} / \mathrm{mm}^{2}$ on these planes. Find the principal stresses and its planes. Find the maximum shear stress and its plane.	1	K3	$\begin{array}{\|l} \hline 1,2,3,4 \\ , 7 \end{array}$	1,2
14	(a)	Draw the S.F.D and B.M.D for the beam shown in fig: 1 Fig-1	2	K3	$\begin{aligned} & 1,2,3,4 \\ & , 5,7,9 \end{aligned}$	1,2
		OR				
	(b)	A Cantilever beam 1.8 m long carries a UDL of $2 \mathrm{kN} / \mathrm{m}$ over 1.2 m from free end and a concentrated load of 1.5 kN at the centre of the beam. Construct the SF and BM diagrams.	2	K3	$\begin{aligned} & 1,2,3,4 \\ & , 5,7,9 \end{aligned}$	1,2

